A NEW REAGENT FOR ALDEHYDE SYNTHESIS: METHYLENEBIS(N,N-DIMETHYLDITHIOCARBAMATE) 1)

Takeshi NAKAI and Makoto OKAWARA

Research Laboratory of Resources Utilization,

Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152

Treatment of the title compound with n-butyllithium produces the lithiomethylene derivative $(\underline{4})$. The reagent $\underline{4}$ so generated has been shown to serve effectively as an equivalent of the formyl anion by alkylation of $\underline{4}$ with alkyl halides followed by hydrolysis with mercuric ion to the corresponding aldehyde.

A reasonable number of methods are available for aldehyde synthesis from formaldehyde dithioacetal (eq 1). The synthetic potential of 1,3-dithiane $(\underline{1})^2$ and methyl methylthiomethyl sulfoxide $(\underline{2})^3$ has been vigorously established.

We wish to report here that methylenebis (N,N-dimethyldithiocarbamate) $(\underline{3})$ is very useful for aldehyde synthesis in a similar way. The overall transformation is depicted by eq 2. The method is certainly an addition to the host of recently developed aldehyde syntheses.

$$\underline{3} \xrightarrow{\text{n-BuLi}} [^{\Theta}_{\text{CH}(SCSNMe}_{2})_{2}] \xrightarrow{\text{RX}} \text{RCH}(SCSNMe}_{2})_{2} \xrightarrow{\text{Hg}(II)/\text{H}_{2}\text{O}} \text{RCHO} + \text{Hg}(SCSNMe}_{2})_{2} \qquad (2)$$

Bis (dithiocarbamate) $\underline{3}^{4}$) was obtained quantitatively from dichloromethane and sodium N,N-dimethyldithiocarbamate. Treatment of $\underline{3}$ in THF at -78°C with n-butyllithium (1 equiv) in n-hexane gave a yellow solution containing the anion $\underline{4}$, which was stable at this temperature for at least 2 hr. At -78°C, the anion 4 reacted smoothly with alkyl halides giving alkylated bis (dithiocarbamate) (5)

in good yields (Table 1). Hydrolysis of $\underline{5}$ in 80% aqueous acetonitrile in the presence of mercuric chloride (2.2 equiv) and mercuric oxide (2.2 equiv) at 50°C for 1 hr gave the corresponding aldehyde in excellent yields (Table 1).

The present aldehyde synthesis appears to be advantageous in the following points. (1) The starting material 3 is readily accessible. (2) The anion 4 is easily generated and highly reactive. (3) Alkylated bis(dithiocarbamate) (5) is very stable and easily purified; the major impurity is unreacted 3 which can be easily separated from 5 with the aid of the poor solubility of 3 in carbon tetrachloride. (4) Bis(dithiocarbamate) 5 is much more easily hydrolyzed to aldehyde than the corresponding 1,3-dithiane due to the stronger affinity of the dithiocarbamate moiety for mercuric ion. For example, complete hydrolysis of 5 (R=PhCH₂) required only 1 hr at 50°C whereas that of the 1,3-dithiane counterpart required more than 4 hr at 60°C under the similar conditions. 5)

	Table 1	Alkylation	of The	Anion 4	and	Hydrolysis	of 5
--	---------	------------	--------	---------	-----	------------	------

	Bis(di	RCHO ^{d)}			
RX	Yield, b) %	Mp, °C	δ (HC≡)	in NMR ^{C)}	Yield,,e) %
CH ₃ I	98	106-108	6.07	(q)	97
CH ₃ CH ₂ I	74	93-96	6.06	(t)	95
n-BuI	65	liquid	6.07	(t)	90
PhCH ₂ I	83	173-175	6.30	(t)	97
	75 ^{g)}				

a) Based on 3. Yields based on reacted 3 were ca.100% except for n-BuI.

REFERENCES AND NOTES

- 1) Dithiocarbamates in Organic Synthesis. I.
- 2) E.J.Corey and D.Seebach, Angew. Chem. Int. Ed. Engl., 4, 1075, 1077 (1965).
- 3) K.Ogura and G.Tsuchihashi, Tetrahedron Lett., 3151 (1971).
- 4) $\underline{3}$: mp 153-154°C(EtOH); NMR(CDCl₃): δ 5.40 (s, CH₂) and 3.30, 3.40 (2s, NCH₃).
- 5) E.J.Corey and B.W.Erickson, J. Org. Chem., <u>36</u>, 3553 (1971).

(Received May 18, 1974)

b) The yields are not neccessarily optimum. c) In $CDCl_3(TMS)$. d) Isolated as the 2,4-dinitrophenylhydrazone. e) Based on $\underline{5}$. f) Prepared from benzylidene chloride and sodium N,N-dimethyldithiocarbamate: Y. Ueno and M. Okawara, Chem. Lett., 863 (1973). g) In the absence of mercuric oxide.